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Abstract

The authors investigated the influence of 9 species of aquatic plants (Ceratophyllum demersum, Elodea 
canadensis, Hydrocharis morsus-ranae, Lemna minor, Nuphar luteum, Potamogeton natans, Sagittaria 
sagittifolia, Sparganium ramosum, Stratiotes aloides) on the occurrence of aquatic zoosporic fungus spe-
cies in the water of three water bodies of different trophy. The fewest fungi were noted in the containers 
with Potamogeton natans (9), Elodea canadensis (15) and Hydrocharis morsus-ranae (16), the most in 
containers with Sparganium ramosum (23), Lemna minor (24) and Nuphar luteum (25). More fungi were 
found to grow in the containers with 7 plants than in the controls (the mean ratio of Co/Pl ranged from 
1.7/3.7 to 6.7/8.7). However, for Potamogeton natans and Sparganium ramosum, control samples con-
tained more fungus species. The mean ratio for the samples with Potamogeton natans was 5.7/2.7 and with 
Sparganium ramosum – 6.3/5.4.
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Introduction

Numerous interactions that occur between organisms 
in each water reservoir include the most common food in-
terlinkage resulting in a number of trophic chains as well 
as interactions in which specimens of one species either 
stimulate or inhibit propagation and growth of another 
species. This usually happens as a result of excretion of 
certain organic substances to the environment [1]. Cer-
tain species of cyanobacteria may serve as an example of 
such an effect on other aquatic organisms [2,3]. During 
growth, cyanobacteria excrete toxic substances, which re-
main toxic even after cell death [4].

As shown in numerous studies, photosynthesizing 
bacteria [5-8], algae [1,9,10] and higher plants [11,12] 
found in water excrete some of the organic compounds 
produced in the process of photosynthesis to the aquatic 
environment. This is the so-called primary extracellular 
production [1,8].

In aquatic reservoirs, reducers such as heterotrophic 
bacteria and fungi play a significant role in the matter and 
energy cycles. Up to now, our studies have shown that 
the substances excreted by cyanobacteria considerably 
inhibit the growth of bacteria [13], and aquatic conidial 
[14] and zoosporic [15] fungi. However, the substances 
excreted by aquatic plants may either stimulate or inhibit 
the growth of bacterioplankton [16].

In this context, we decided to focus on the interactions 
between certain species of aquatic plants and zoosporic fun-
gi which have never before been discussed in literature.

Material and Methods
 
The experiments were conducted in September 2003 

using 9 species of aquatic plants:
Ceratophyllum demersum L., Elodea canadensis Rich., 

Hydrocharis morsus-ranae L., Lemna minor L., Nuphar 
luteum (L.) Sm., Potamogeton natans L., Sagittaria sagitti-
folia L., Sparganium ramosum Huds. and Stratiotes aloides 



Czeczuga B. et al.150

L. Aquatic plants for experiments were collected from the 
Narew River in Narew National Park near Kurowo.

Water for analysis and experiments was collected from 
three water bodies:
I. Dojlidy Pond, located near Białystok: Area 34.2 ha, 

max. depth 2.85 m, its south  shore borders with co-
niferous woods and its western part with the town  of  
Białystok. The samples were collected from the west-
ern part of this pond, which has been used by the in-
habitants of the town as a beach.

II. Fosa Pond, near Palace Park in Białystok: Area 2.5 
ha, max. depth 1.75 m. Pond contains wild ducks and 
breeding swans as well as crucian carp and tench bred, 
used  by anglers. The pond was surrounded by mead-
ows with linden (Tilia cordata Mill.) and elm (Ulnus 
carpinifolia Gled.).

III. Supraśl River, right-bank tributary of the middle part 
of the Narew river flowing through Knyszyńska For-
est. Length 106.6 km. The samples were collected 
from the site above the municipal swimming pool at 
the sluice of an arm of the Supraśl river flowing just 
through the town of Supraśl. The sampling site was 
surrounded by meadows and the bed was muddy.
Water samples for the experiments were collected from 

each reservoir at a depth of 15-30 cm at a distance of 0.5 
m from the bank. The water was filtered through a gauze 
and then poured to containers. Nineteen parameters were 
determined for the water using standard methods [17].

Water samples, 800 ml each, were placed in 1000 ml 
containers. The aquatic plant  species mentioned above 
(rewashed with distillated water) were added, 200g to 
each container. For each plant, there were two contain-
ers containing water from the particular water body used 
to obtain the plant. The third container served as control 
without aquatic plants (9 containers for each plant). All 
containers were enclosed in Petri dishes with the bed 
turned upside down to prevent possible airborne con-
tamination in the containers by funga spores [18]. The 
containers were stored at 15±1oC, with access to daylight 
resembling natural conditions and following the recom-
mended instructions [18]. The analyses were carried out 
in two parallel repetitions.

The grains of buckweat, hemp and clover served as 
bait and were added to all experimental (from plants and 
control) containers.

During one month of exposure, clusters from the con-
tainer bottoms, side walls, and the surface of baits of con-
trol samples and with aquatic plants were examined under 
a microscope. The mycelium (zoospores, antheridia and 
oogonia) of aquatic fungi growing in particular containers 
was recorded.  For determinations of the particular fun-
gi species, the following keys were used: Johnson [19], 
Sparrow [20], Waterhouse [21], Seymour [22], Batko 
[23], Karling [24], Dick [25], Pystina [26], Watanabe [27] 
and in the works of the authors who were the first to de-
scribe the respective species.

The effect of aquatic plants on the number of aquat-
ic zoosporic fungus species is presented as a ratio of 

Co/Pl – number of cases where a species were found in 
control culture (Co) to those in culture with water plants  
(Pl) [28].

The results were subjected to statistical analysis [28].
 

Results

Chemical analysis of water used for the experiment 
shows that the water was the most eutrophic in Pond Fosa, 
the least eutrophic in the river Supraśl, and in the middle 
in pond Dojlidy. This is expressed by such parameters of 
chemical analysis of water as dissolved oxygen content, 
BOD5, COD of all three forms of nitrogen, sulphates, 
chlorides, dry residue and dissolved solids (Table 1).

In the present experiment, 103 types of zoosporic fun-
gus species were found to grow, including 18 belonging to 
the Chytridiomycetes, 1 to Plasmodiophoromycetes, 82 to 
the Oomycetes and 2 species to the Zygomycetes (Table 
2). In the waters of all three aquatic reservoirs a consider-
ably larger number of fungi developed in containers with 
plants than in controls, 19 species were found to grow only 
in control containers, 45 species in containers with aquatic 
plants and 39 species were isolated both in controls and 
plant-containing containers (Table 3). The fewest fungi 
were noted in the containers with Potamogeton natans (9), 
Elodea canadensis (15) and Hydrocharis morsus-ranae 
(16), the most in the containers with Nuphar luteum (25), 
Lemna minor (24) and Sparganium ramosum (23) (Table 
4). The number of fungi in containers with plants compared 
to control in general – (Table 3) and for particular aquatic 
plants – (Table 4) are important statistically. 

As shown in Table 5, more fungi were found to grow 
in the containers with plants than in the control ones. 
However, for Potamogeton natans and Sparganium ra-
mosum, control samples contained more fungus species. 
The mean ratio for the samples with Potamogeton natans 
was 5.7/2.7 and with Sparganium ramosum – 6.3/5.4.

Discussion

The number of zoosporic fungus species was higher in 
the containers with plants in comparison to the control in 
seven out of nine plant species examined. The mean ratio 
of Co/Pl ranged from 1.7/3.7 to 6.7/8.7. However, in the 
case of Potamogeton natans and Sparganium ramosum, 
more fungus species were found to grow in the control 
containers. The mean ratio of Co/Pl for Potamogeton na-
tans was 5.7/2.7 and for Sparganium ramosum 6.3/5.3. It 
should be emphasized that we observed the inhibitory ef-
fect on the growth of bacteria in the case of other species 
of the genus Potamogeton [16]. For Potamogeton lucens, 
this kind of phenomenon was noted by Kudriavcev [12] 
in natural conditions.

Benson and Calvin [29] were the first to observe that 
during photosynthesis glycolic acid is excreted as an 
early product. For some time it was thought that glycolic 
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Specification Dojlidy Pond Fosa Pond Supraśl River

Temperature (o C) 19.5 17.0 18.0

pH 7.42 7.61 7.88

O2 (mg dm3) 7.80 3.65 9.20

BOD5 (mg dm3) 2.50 0.50 5.80

COD (mg dm3) 12.35 22.97 7.84

CO2 ( mg dm3) 11.15 18.80 11.95

Alkalinity in CaCO3 (mval dm3) 3.70 4.50 5.10

N-NH3 (mg dm3) 0.280 0.500 0.250

N-NO2 (mg dm3) 0.005 0.007 0.005

N-NO3 (mg dm3) 0.060 0.900 0.070

P-PO4 (mg dm3) 0.120 1.670 1.530

Sulphates (mg dm3) 30.86 69.08 20.16

Chlorides (mg dm3) 43.05 52.15 36.05

Total hardness Ca (mg dm3) 60.48 56.16 72.25

Total hardness Mg (mg dm3) 11.61 11.50 15.91

Fe (mg dm3) 0.350 0.450 0.650

Dry residue (mg dm3) 280.0 444.0 242.0

Dissolved solids (mg dm3 ) 261.0 433.0 222.0

Suspended solids (mg dm3) 19.0 11.0 20.0

Table 1. Chemical properties of water in particular water bodies (n=5).

Species
Control Plants

Ratio 
Co/PlDojlidy 

Pond
Fosa 
Pond

Supraśł 
River

Dojlidy 
Pond

Fosa 
Pond

Supraśł 
River

Chytridiomycetes

Olpidiales

1. Olpidium granulatum Karling x x 1/1

Chytridiales

2. Amoebochytrium rhizidioides Zopf x 0/1

3. Diplophlyctis laevis Sparrow x 0/1

4. Entophlyctis helioformis (Dang.) Ramsb. x 0/1

5. Obelidium mucronatum Nowakowski x 0/1

6. Phlyctochytrium aureliae Ajello x 1/0

7. Phlyctorhiza endogena Hanson x 1/0

8. Podochytrium clavatum Pfitzer x 1/0

9. Rhizophydium ampullaceum (Braun) Fischer x 0/1

10. Rhizophydium braunii (Zopf) Fischer x 0/1

11. Rhizophydium carpophilum (Zopf) Fischer x 1/0

12. Rhizophydium nodulosum Karling x 0/1

Table 2. Zoosporic fungi found in water from particular water bodies in experiment (Co - control, Pl – with plants).

Table 2. continues on next page...
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Blastocladiales

13. Blastocladia gracilis Kanouse x 0/1

14. Blastocladia rostrata Minden x 0/1

15. Blastocladiopsis parva (Whiffen) Sparrow x x x x 2/2

16. Catenaria anguillulae Sorokin x 0/1

17. Catenaria verrucosa Karling x x 1/1

18. Catenophlyctis variabilis (Karling) Karling x x x x x x 3/3

Plasmodiophoromycetes

Plasmodiophorales

19. Woronina polycistis Cornu x 1/0

Oomycetes

Saprolegniales

20. Achlya ambisexualis Raper x 0/1

21. Achlya americana Humphrey x x x x x 3/2

22. Achlya apiculata de Bary x 1/0

23. Achlya bisexualis Coker et Couch x 1/0

24. Achlya caroliniana Coker x 1/0

25. Achlya conspicua Coker x 0/1

26. Achlya crenulata Ziegler x 0/1

27. Achlya debaryana Humphrey x x x x x x 3/3

28. Achlya diffusa Harvey x x x 1/2

29. Achlya dubia Coker x 1/0

30. Achlya flagellata Coker x x 1/1

31. Achlya klebsiana Pieters x x 1/1

32. Achlya oblongata de Bary x x x 1/2

33. Achlya orion Coker x 0/1

34. Achlya polyandra Hildebrand x x x x x x 3/3

35. Achlya prolifera Nees x x 0/2

36. Achlya proliferoides Coker x 0/1

37. Achlya racemosa Hildebrand x x x x 1/3

38. Achlya radiosa Maurizio x x 0/2

39. Achlya recurva Cornu x x x 1/2

40. Achlya stellata de Bary x 0/1

41. Achlya treleaseana (Humphr.) Kauffm. x 0/1

42. Aphanodictyon papillatum Huneycutt x 0/1

43. Aphanomycetes amphigynus Cutter x 0/1

44. Aphanomycetes irregularis Scott x x x x x 2/3

45. Aphanomycetes laevis de Bary x x x x x x 3/3

46. Aplanes androgynus (Archer) Humphrey x x x 1/2

Table 2. continues on next page...
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47. Cladolegnia subterranea (Dissm.) Johan. x 1/0

48. Cladolegnia unispora (Coker et Couch) Johan. x x 1/1

49. Dictyuchus magnusii Leitgeb x 0/1

50. Dictyuchus monosporus Leitgeb x x x x x 2/3

51. Dictyuchus sterile Coker x x 1/1

52. Geolegnia inflata Coker et Harvey x 1/0

53. Isoachlya anisospora (de Bary) Coker x x x 2/1

54. Isoachlya monilifera (de Bary) Kauffm. x 0/1

55. Isoachlya toruloides Kauffm. et Coker x 1/0

56. Leptolegnia caudata de Bary x 1/0

57. Leptolegniella keratinophila Huneycutt x x x 1/2

58. Protoachlya paradoxa (Coker) Coker x 0/1

59. Pythiopsis cymosa de Bary x x x x 1/3

60. Saprolegnia anisospora de Bary x 0/1

61. Saprolegnia delica Coker x x 1/1

62. Saprolegnia diclina Humphrey x x 1/1

63. Saprolegnia ferax (Gruith) Thuret x x x x x x 3/3

64. Saprolegnia glomerata (Tiesenh.) Lund x x 1/1

65. Saprolegnia hypogyna Pringsheim x x 1/1

66. Saprolegnia lapponica Gäumann x 0/1

67. Saprolegnia litoralis Coker x 0/1

68. Saprolegnia monoica Pringsheim x 0/1

69. Saprolegnia parasitica Coker x x x x 2/2

70. Saprolegnia torulosa de Bary x 0/1
71. Saprolegnia unispora 
      (Coker et Couch) Seymour x x x 1/2

72. Thraustotheca clavata (de Bary) Humphrey x x x x 1/3

Leptomitales

73. Apodachlya pirifera Zopf x x 1/1

74. Apodachlya seriata Lund x 1/0
75. Aqualinderella fermentans 
      Emer. et Weston x 1/0

76. Leptomitus lacteus (Roth) Agardh x 0/1

77. Rhipidium americanum Thaxter x 0/1

Lagenidiales

78. Olpidiopsis saprolegniae (Braun) Cornu x x x x 2/2

79. Olpidiopsis vexans Barret x 1/0

80. Pseudolpidiella deformans (Serbinov) Cejp x x 0/2

81. Rozellopsis inflata (Butler) Karling x 0/1

Peronosporales

82. Phytophthora gonapodyoides (Petersen) Buism. x 0/1

83. Pythium afertile Kanouse x 0/1

Table 2. continues on next page...
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84. Pythium aquaticum Höhnk x x 0/2

85. Pythium butleri Subramaniam x x 1/1

86. Pythium carolinianum Matthews x 1/0

87. Pythium catenulatum Matthews x 1/0

88. Pythium debaryanum Hesse x 0/1

89. Pythium dissotocum Drechsler x x 1/1

90. Pythium helicandrum Drechsler x 0/1

91. Pythium hypogynum Middletoni x 0/1

92. Pythium inflatum Matthews x x 1/1

93. Pythium intermedium de Bary x 0/1

94. Pythium middletonii Sparrow x 1/0

95. Pythium myriotylum  Drechsler x x x 1/2

96. Pythium periplocum Drechsler x x 0/2

97. Pythium proliferum Schenk x 0/1

98. Pythium pulchrum Minden x x 1/1

99. Pythium rostratum Butler x x x x x 2/3

100. Pythium torulosum Cuker et Patterson x x x 1/2
101. Pythium vanterpoolii 
        V. Kouyeas et H. Kouyeas x 0/1

Zygomycetes

Zoopagales

102. Zoopage phanera Drechsler x 0/1

103. Zoophagus insidians Sommerstorff x 0/1

Total number 27 27 23 40 42 41 77/123

Specification Fungi (see Table2) Number of fungi

Only control 6,7,8,11,19,22,23,24,29,47,52,55,56,73,74,79,86,87,94 19*

Only with plants 2,3,4,5,9,10,12,13,14,16,20,25,26,33,35,36,38,40,41,42,43,49,54,58,60,66,67,68,70, 
76,77,80,81,82,83,84,88,90,91,93,96,97,101,102,103 45*

Control and with plants 1,15,17,18,21,27,28,30,31,32,34,37,39,44,45,46,48,50,51,53,57,59,61,62,63,64,65, 
69,71,72,73,78,85,89,92,95,98,99,100 39

Table 3. Aquatic fungi found in particular containers.

*Asterisks indicate differences significant at the ≤0.05% level

acid alone was excreted by phytoplankton [30,31]. Later 
studies confirmed that photosynthesizing hydrobionts 
excrete a number of other compounds produced during 
photosynthesis [1,2]. This refers not only to phytoplank-
ton but to higher plants as well [11,32,33]. These sub-
stances include various organic compounds of carbon 
[34-36], free saccharides [37], free amino acids [38] and 
even a polymeric substance [39]. Recent studies have 
revealed a release of numerous enzymes [40], includ-
ing glucosidase [41] and phosphatase [42] to the aquatic 
environment. All these forms of chemical compounds 
form certain types of interactions, such as competition 

or antagonism among bacteria, algae and aquatic weeds 
[43]. Organic substances dissolved in water [44] and 
amino acids are taken in by other hydrobionts [45,46], 
especially by heterotrophic bacteria [47-49] and even 
by mixotrophic organisms [50]. Dissolved organic com-
pounds [51] and free amino acids [52] are used as nutri-
ents by aquatic fungi. Certain species of aquatic plants 
show antagonistic properties, producing alkaloids of an-
tibiotic properties [53,54] or allelochemicals, the poly-
phenol-type substances, which delimit the occurrence 
of periphyton on aquatic plant blades [55,56]. Lysine, a 
free amino acid, acts as an algicide [57].
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Plant Fungi (see Table2) Number of fungi

Ceratophyllum demersum L. 18,26,27,34,43,44,45,58,63,69,71,72,77,78,84,85,95,99 18*

Elodea canadensis Rich. 2,10,16,31,34,35,40,44,50,53,59,63,72,80,96 15*

Hydrocharis morsus-ranae L. 13,16,21,25,30,34,37,44,50,54,59,62,73,81,99,102 16*

Lemna minor L. 1,3,4,5,15,17,18,21,27,31,38,42,44,45,54,57,63,64,69,70,78,99,100,101 24*

Nuphar luteum (L.) Sm. 18,20,27,28,32,33,34,41,45,61,63,64,67,68,69,71,72,76,82,83,88,90,92,99,103 25*

Potamogeton natans L. 18,26,27,34,44,45,51,63,71 9*

Sagittaria sagittifolia L. 14,15,31,32,34,35,38,39,49,51,53,59,63,65,72,73,78,89,93,98 20*

Sparganium ramosum Huds. 9,18,21,37,44,45,48,50,53,54,60,62,63,66,69,78,84,91,96,98,99,100,103 23*

Stratiotes aloides L. 12,15,18,21,27,28,34,45,46,50,53,57,62,63,64,95,97,98,99,100,101,103 22*

Control
1,6,7,8,11,15,17,18,19,21,22,23,24,27,28,29,30,31,32,34,37,44,45,46,47,48,50,51, 
52,53,55,56,57,59,61,62,63,64,65,69,71,72,73,74,75,78,79,85,86,87,89,92,94,95, 
98,99,100

57*

Table 4. Aquatic fungi found in containers with particular plant species.

*Asterisks indicate differences significant at the ≤0.05% level

Plant
Pond Dojlidy Pond Fosa River Supraśl Mean ratio

Co/PlCo Pl Co  Pl Co Pl

Ceratophyllum demersum L. 3 4 4 6 3 6 3.5/5.3

Elodea canadensis Rich. 5 7 2 5 2 4 3.0/5.3

Hydrocharis morsus-ranae L. 1 3 2 4 2 4 1.7/3.7

Lemna minor L. 9 11 7 8 4 7 6.7/8.7

Nuphar luteum (L.) Sm. 3 7 4 6 6 10 4.3/7.7

Potamogeton natans L. 6 2 7 4 4 2 5.7/2.7

Sagittaria sagittifolia L. 2 4 2 3 1 4 1.7/3.7

Sparganium ramosum Huds. 6 4 6 5 7 7 6.3/5.3

Stratiotes aloides L. 4 5 5 6 4 7 4.3/6.0

Mean ratio Co/ Pl  4.3/5.2 4.3/5.2 3.7/5.7 

Table 5. Number of fungi species found in control containers and containers with plants in particular water bobies (Co – control,  
Pl – containers with plant).

The intensity of beyond-cell secretion of substances 
generated during photosynthesis changes in the respec-
tive developmental phases of a phytohydrobiont. The 
older the specimen, the greater the amount of the ex-
creted substance, which refers both to cyanobacteria 
[15,58] and algae [10]. The experiment was performed 
in September, i.e. in the terminal phase of the growth of 
plants used for analysis.

Whether or not the presence of an aquatic plant affects the 
number of heterotrophic phytohydrobionts depends upon the 
kind of organic substances excreted by the plant [59, 60].

The largest number of fungus species were found in the 
plant-containing containers, the fewest in the control ones. 
It can be assumed that the substances excreted by plants 

may promote the growth of some fungi while inhibiting the 
growth of others. We observed this kind of  phenomenon 
when studying the effect of cyanobacteria on the growth 
of zoosporic fungi [15]. Some of the fungi identified in the 
study grow both in control and in plant-containing contain-
ers. These are the species commonly encountered in the 
waters of various types of reservoirs in northeastern Poland 
and included the Blastocladiales – Blastocladiopsis parva 
and Catenophlyctis variabilis, the Saprolegniales – Achlya 
americana, Achlya debaryana, Achlya polyandra, Apha-
nomyces irregularis, Aphanomyces laevis, Dictyuchus 
monosporus, Saprolegnia ferax and Saprolegnia para-
sitica; the Lagenidiales – Olpidiopsis saprolegniae; and 
the Peronosporales – Pythium rostratyum. Most of these 
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species grow in water containing cyanobacteria [15], and 
therefore they may be commonly found in rivers and lakes 
[61-71] of varied trophicity, in reservoirs of various lev-
els of pollution. We observed a similar phenomenon when 
studying the effect of cyanobacteria on aquatic conidial 
fungi [14]. Common aquatic species appeared resistant to 
the action of cyanobacterial toxins.

The present study has revealed that the effect of re-
spective aquatic plants on the growth of certain zoosporic 
fungus species depends on water chemistry. The more eu-
trophic water is, the fewer zoosporic fungus species grow 
in the presence of particular aquatic plants. The water in 
Fosa Pond compared to the Supraśl River was more eutro-
phic in nature and contained more sulphates and chlorides.  
This was also the case in Dojlidy Pond. The presence of 
sulphates and chlorides on the growth of zoosporic fungus 
species was also observed in 13 various types of water 
bodies [71]. The growth of fungus species in the pres-
ence of aquatic plants was inhibited in these waters (ratio 
Co/Pl - 4.3/52=0.83) compared to the Supraśl (ratio Co/Pl 
- 3.7/5.7=0.65). Also, the toxic action of cyanobacteria 
synergistic with chemical loading of water was previously 
observed when studying the effect of cyanobacteria on the 
growth of heterotrophic bacteria [13], and on the growth 
of conidial [14], and zoosporic fungi [15].

Of the new and rare species to Polish hydromycology, 
three species, namely Entophlyctis helioformis, Obelidi-
um mucronatum and Saprolegnia lapponica, were found 
to grow in the Supraśl, the first two in containers with 
Lemna minor and with Sparganium ramosum. In the 
control container with the water from the river Supraśl, 
Geolegnia inflata was also noted. As it is known, the 
river Supraśl water was the least eutrophic and the most 
abundant in oxygen, calcium, magnesium and iron. En-
tophlyctis helioformis was first described by Dangeard 
[72] at the end of the 19th century from algae of the ge-
nus Nitella. Almost at the same time, Nowakowski [73] 
described Obelidium mucronatum as a zoosaprophyte on 
insect exuviae. Saprolegnia lapponica, a rare species, 
was described by Gaüman [74] from marshy grounds of 
Swedish Lapland. Geolegnia inflata was first reported 
from coastal waters in North America [75]. In the con-
tainers with water samples collected from Dojlidy Pond, 
two new Polish water species were isolated – Cladoleg-
nia subterranea in the control container and Pseudolpi-
diella deformans in the presence of Elodea canadensis. 
This latter species was also found in the presence of the 
same plant in Fosa Pond. Cladolegnia subterranea was 
first described as Isoachlya subtteranea in soil condi-
tions [76], while Pseudolpidiella deformans as a parasite 
of algae of the genus Draparnaldia [77]. Then Cejp [78] 
distinguished the genus Pseudolpidiella, referring  the 
species Pseudolpidiella deformans to this genus. Dojlidy 
water compared to the other two reservoirs had the low-
est alkalinity and the smallest amounts of N-NO3, P-PO4, 
iron, dry residue and dissolved solids. Aqualinderella 
fermentans, a rare fungus, was found to grow on buck-
wheat grains in a control container with water collected 

from Fosa. This species was first described by Emerson 
and Weston [79] from waters in Monrovia deprived of 
oxygen and containing large amounts of carbon diox-
ide. Therefore, mycological monographs refer this fun-
gus to the subtropical and equatorial zone. Recent stud-
ies [81,82] have shown that this fungus may develop in 
aquatic reservoirs of Europe, colonizing not only juicy 
fruits but also dry fruits and seeds of certain plants.

Worthy of note is the fact that in Fosa Pond, where 
Aqualinderella fermentans can be found, a few days after 
its water sheet has been covered with ice, oxygen is re-
placed by hydrogen sulphide, known to destroy all living 
organisms except for hydrogen sulphide bacteria [5,6]. It 
can be assumed that some spores of Aqualinderella fer-
mentans may survive winter “arrested” in the ice cover. 
This refers to all aquatic fungus species found in this type 
of aquatic reservoir [83].

Conclusions

Of the nine species of aquatic plants examined, seven 
caused an increase in the number of zoosporic fungus spe-
cies in experimental conditions, while two (Potamogeton 
natans, Sparganium ramosum) had an inhibitory effect.

According to the authors, some photosynthesizing 
phytohydrobionts excrete organic substances that serve 
as nutrients for zoosporic fungi (dissolved organic mat-
ter, amino acids) while other compounds (cyanobacterial 
toxins, alkaloids, polyphenols) posses antibiotic proper-
ties that inhibit the growth of certain zoosporic fungus 
species.

Thus, the number of aquatic fungi in a water reservoir 
depends not only on abiotic factors (water chemistry) but 
also on biotic properties, especially on a variety of posi-
tive or negative interactions within a group of hydrobionts 
inhabiting the reservoir.
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